ERRATA DO LIVRO PISCINA - ÁGUA & TRATAMENTO & QUÍMICA

Indica-se, imprima as páginas, recorte nas linhas pontilhadas (todas) que contornam os Quadros e cole sobre o mesmo Quadro que está nas páginas indicadas, onde devem ser alterado os valores.

PÁG.655

QUADRO 5- Volume de HCl a ser adicionado a água da piscina com capacidade de 1 m³, com alcalinidade a 80 **mg CaCO₃/L** ou 120 mg **CaCO₃/L**, tendo como referência o HCl 35,20% (p/p), com d = 1,175 g/cm³.

	Alcalinidade a bicarbonato 80 mg CaCO ₃ / L	Alcalinidade a bicarbonato 120 mg CaCO ₃ / L
Redução do pH	Volume de HCl a ser adiconado na água	Volume de HCl a ser adicionado na água
8,4 para 7,4	≈ 11,59 mL	≈ 17,0 mL
8,2 para 7,4	≈ 11,00 mL	≈ 16,0 mL
8,0 para 7,4	≈ 10,00 mL	≈ 14,5 mL
7,8 para 7,4	≈ 7,50 mL	≈ 11,0 mL
7,6 para 7,4	≈ 5,00 mL	≈ 7,5 mL

Fator de multiplicação = 1,22 (mg HCO₃ /L para mg CaCO₃/L) > (maior) alcalinidade > consumo de substância para alterar o pH // Fonte: MACEDO, 2003, 2009.

PÁG.656

QUADRO 8- Valores de volumes de HCl para redução de pH de água de piscina com capacidade de 1 m³ com teor de matéria ativa de 35,20% e 20%.

	· Alcalinidade a l 80 mg Ca		· Alcalinidade a 120 mg C	
Redução do pH	Volume de HCI (35,20%) a ser adicionado na água	Volume de HCI (20%) a ser adicionado na água	Volume de HCI (35,20%) a ser adicionado na água	Volume de HCl (20%) a ser adicionado na água
De 8,4 para	7,4 ≈ 11,5 mL	≈20,0 mL	≈ 17,0 mL	≈ 30,0 mL
De 8,2 para	7,4 ≈ 11,0 mL	≈19,5 mL	≈ 16,0 mL	≈ 28,0 mL
De 8,0 para	7,4 ≈ 10,0 mL	≈17,5 mL	≈ 14,5 mL	≈ 25,5 mL
De 7,8 para	7,4 ≈ 7,5 mL	≈13,0 mL	≈ 11,0 mL	≈ 19,5 mL
De 7,6 para	7,4 ≈ 5,0 mL	≈ 9,0 mL	≈ 7,5 mL	≈ 13,2 mL

Fórmula Geral: V_{HCI X%} = (35,20 x V_{HCI 35,20%}) / X%

Abaixar o pH de 8,4 para 7,4 - Alcalinidade 80 mg CaCO₃/ L

Abaixar o pH de 7,8 para 7,4 - Alcalinidade 120 mg CaCO₃/ L

PÁG.677

QUADRO 14- Massa de NaHSO₄ a ser utilizado na piscina para redução do pH em faixa específica, para volume de 1 m³, resultado expresso em mg CaCO₃ / L.

	Alcalinidade a bicarbonato 80 mg CaCO ₃ / L	Alcalinidade a bicarbonato 120 mg CaCO ₃ / L
Faixa de pH	m(g) NaHSO ₄ / m ³	m(g) NaHSO ₄ / m ³
8,4 para 7,4	≈16,59	≈25,01
8,2 para 7,4	≈15,62	≈23,18
8,0 para 7,4	≈13,78	≈ 20,74
7,8 para 7,4	≈10,98	≈ 16,71
7,6 para 7,4	≈ 6,83	≈ 10,25
! 	Fator de multiplicação = 1 22 (mg HCO ₂ -/L	para mg CaCO ₂ /L)

1

PÁG.685

QUADRO 16- Massa de Na₂CO₃ (g/m³) (98%) a ser adicionada para aumento do pH, levando em consideração uma determinada faixa de pH, para volume de 1 m³, resultado da alcalinidade expresso em **mg CaCO**₃/L.

1	Alcalinidade a bicarbonato 80 mg CaCO ₃ / L	Alcalinidade a bicarbonato 120 mg CaCO ₃ / L
Faixa de pH	Massa de Na ₂ CO ₃ (g / m ³)	Massa de Na₂CO₃ (g / m³)
6.0 para 7,4	$306,0 \times 1,22 \approx 373,32 \approx 373,3$	$459.0 \times 1.22 \approx 559.98 \approx 600$
6,4 para 7,4	$114,3:x \ 1,22 \approx 139,45 \approx 139,5$	$171,0 \times 1,22 \approx 208.62 \approx 208,6$
6,4 para 7,4 6,8 para 7,4	$38.0 \times 1.22 \approx 46.36 \approx 46.4$	$56,5 \times 1,22 \approx 68,93 \approx 69$
7,0 para 7,4	$19.5 \times 1.22 \approx 23.79 \approx 23.8$	$28,50 \times 1,22 \approx 34,77 \approx 34,8$

Fator de multiplicação = 1,22 (mg HCO₃-/L para mg CaCO₃/L) // > (maior) alcalinidade > consumo de substância para alterar o pH. Cálculos realizados com base no Na₂CO₃ com teor de pureza de 98 % (p/p)

PÁG.691

QUADRO 18- Massa de Na₂CO₃ (g/m³) (pureza = 99,5%) a ser adicionada para aumento do pH, levando em consideração uma determinada faixa de pH, para volume de 1 m³, resultado da alcalinidade expresso em **mg CaCO₃/L**.

I	Alcalinidade a bicarbonato 80 r	ng CaCO ₃ / L Alcalinidade a bicarbonato 120 mg CaCO ₃ / L
Faixa de p	oH Massa de Na₂CO₃ (g /	m³) Massa de Na ₂ CO ₃ (g / m³)
6.0 para 7	,4 299,95 x 1,22 = 365,94	449,93 x 1,22 = 548,91
6,4 para 7	,4 111,93 x 1,22 = 136,55	167,89 x 1,22 = 204,82
6,8 para 7	,4 37,07 x 1,22 = 45,23	55,60 x 1,22 = 67,83
6,8 para 7	,5 39,64 x 1,22 = 48,36	59,45 x 1,22 = 72,53
7,0 para 7	,4 18,80 :x 1,22 = 22,94	28,20 x 1,22 = 34,40
7,0 para 7	,5 21,36 x 1,22 = 26,06	32,04 x 1,22 = 39,09
7,2 para 7	,5 9,83 x 1,22 = 11,99	14,75 x 1,22 = 17,99

OBS.: Cálculos realizados com base no Na₂CO₃ com teor de pureza de 99,5% (p/p) Fator de multiplicação = 1,22 (mg HCO₃-/L para mg CaCO₃/L) // > (maior) alcalinidade > consumo de substância para alterar o pH.

PÁG.692

QUADRO 19- **Massa de NaHCO**₃ (g/m³) (pureza = 99%) a ser adicionada para aumento do pH, levando em consideração uma determinada faixa de pH, para volume de 1 m³, resultado da alcalinidade expresso em **mg CaCO**₃/L.

	Alcalinidade a bicarbonato 80 mg CaCO ₃ / L	Alcalinidade a bicarbonato 120 mg CaCO ₃ / L
Faixa de pH	Massa de NaHCO ₃ (g / m ³)	Massa de NaHCO₃ (g / m³)
6.0 para 7,4	365,94 x 1,6 = 585,50	548,91 x 1,6 = 878,26
6,4 para 7,4	136,55 x 1,6 = 218,48	204,82 x 1,6 = 327,71
6,8 para 7,4	45,23 x 1,6 = 72,37	67,83 x 1,6 = 108,53
6,8 para 7,5	48,36 x 1,6 = 77,38	72,53 x 1,6 = 116,04
7,0 para 7,4	22,94 x 1,6 = 36,70	34,40 x 1,6 = 55,04
7,0 para 7,5	26,06 x 1,6 = 41,70	39,09 x 1,6 = 62,54
7,2 para 7,5	11,99 x 1,6 = 19,18	17,99 x 1,6 = 28,78

Obs.: Cálculos iniciais de referência com base no Na₂CO₃ (g/m³) (pureza = 99,5%) Cálculos realizados com base no NaHCO₃ → 99% (teor de matéria ativa).

OBS.: 1- Na determinação da concentração da alcalinidade em mg CaCO₃/L a metodologia utilizada na dosagem, conforme no "Standard Methods for the Examination of Water and Waster" nas diversas edições, cito como exemplos, a 20th e 22th. Edition (APHA, 1980; APHA/AWWA/WEF, 2012) utiliza como referência nos cálculos, para expressar os resultados da alcalinidade em mg CaCO₃/L, o "equivalente-grama" do CaCO₃ que é 50, veja a fórmula a seguir, transcrita *ipsis litteris*.

ALKALINITY, mg CaCO₃ =
$$\frac{A \times N \times 50.000}{mL \text{ sample}}$$

A = Volume em mL de ácido gastos na titulação.

N = Normalidade da solução padrão de ácido // mL sample = Volume da amostra

ALCALINIDADE (
$$^{\text{mg CaCO}_3}/_{\text{L}}$$
) = $\frac{V_{(\text{mL})}x N_B x \text{ Eq-g}_A x 1.000}{V_{\text{mL}} \text{ amostra}}$

ALCALINIDADE ($^{\text{mg CaCO}_3}/_{\text{L}}$) = $\frac{V_{(\text{mL})}x N_B x 50 x 1.000}{V_{\text{mL}} \text{ amostra}}$

ALCALINIDADE ($^{\text{mg CaCO}_3}/_{\text{L}}$) = $\frac{V_{(\text{mL})}x N_B x 50.000}{V_{\text{mL}} \text{ amostra}}$

MM CaCO₃ =
$$40,078 + 12,011 + 3 \times 15,999 = 100,086 \rightarrow Eq-g = 100,086/2 = 50,043$$

MM HCO₃⁻¹ =
$$1,007 + 12,011 + 3 \times 15,999 = 61,015 \rightarrow Eq-g = 61,015/1 = 61,015$$

Em função disso na transformação da **expressão da concentração de mg CaCO** $_3$ /L **para mg HCO** $_3$ $^{-1}$ /L, utiliza-se um fator de 1,22 que, origina da relação 61,015 (HCO $_3$ $^{-1}$) / 50,043 (CaCO $_3$) = 1,2191 \cong 1,22.

Para transformar mg $HCO_3^-/L \rightarrow mg CaCO_3/L \times 1,22$. Para se transformar mg $CaCO_3/L \rightarrow mg HCO_3^{-1}/L / 1.22$.

2- Outra forma de calcular o fator para converte alcalinidade mg CaCO₃ / L para mg HCO₃-1 / L (WATERBOARDS, 2020).

A MM do CaCO₃ é igual a 100 g/mol // A MM do HCO₃-1 é igual a 61 g/mol.

$$CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$$
(100 g/mol) (61 g/mol x 2)

1 mol de Ca(HCO₃)₂ corrresponde a 1 mol de CaCO₃, que corresponde há 2 moles de HCO₃-, logo, 122 g. O que implica na relação: **122 g (ou mg) HCO₃-1 / 100 g (ou mg) de CaCO₃** (WATERBOARDS, 2020).

g (ou mg) CaCO₃/L x 1,22
$$\rightarrow$$
.(g ou mg) HCO₃-1 /L

g (ou mg)
$$HCO_3^{-1}/L / 1,22 \rightarrow g$$
 (ou mg) $CaCO_3/L$

WATERBOARDS. Converting Carbonate Alkalinity from mg/L as CaCO₃ to mg/L as CO₃². Disponível em

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/drinkingwaterlabs/AlkalinityConversions.pdf>. Acesso em 28 de fevereiro de 2020.

Eq-g = Equivalente-grama

$$M = \frac{\textbf{RELAÇÕES}}{V(L)}$$

$$N = \frac{N^{\circ} Eq - g}{V(L)} \qquad N^{\circ} Eq - g = \frac{m}{Eq - g}$$

$$M \times V(L) = n^{\circ} \text{ de moles } // N \times V(L) = n^{\circ} \text{ de Eq-g}$$

Quanto uma substância "A", que desejamos dosar, reage com uma substância "B". sendo que "A" está dentro de um volume de uma amostra, e "B" apresenta concentração conhecida, a sua concentração será nossa referência para cálculo

$$\mathbf{n^o} \text{ de eq-g de } \mathbf{A} = \mathbf{n^o} \text{ de eq-g de B} \qquad \qquad \frac{m_A(g)}{\text{Eq-g}_A} = \text{N}_B.\text{V}_B(\mathbb{L}).f_c \Rightarrow m_{A(g)} = \text{N}_B.\text{V}_B(\mathbb{L}).f_c \text{Eq-g}_A$$

fc = Fator de correção 1g = 1000 mg1litro(L) = 1000 mL

Transformação de g em mg e de L em mL.

$$m_{\rm A}.1000~mg \equiv N_{\rm B}.V_{\rm B}.1000~mL.f_{\rm C}.~Eq\mbox{-}g_{\rm A}$$

$$m_{A(mg)} = N_B.V_{B(mL)}.f_C.$$
 Eq- g_A

m_A(mg) = massa da substância "A" em um Vamostra (volume da amostra)

$$\begin{array}{ccc} m_A(mg) & ----- & Vamostra(mL) \\ X & ----- & 1000 \ mL \end{array}$$

O X é uma massa (mg) em 1000 mL = 1 L \rightarrow (mg / L = ppm)

$$\begin{split} m_{A(mg)} &= N_B.\,V_{B\,(mL)}.f_{C}.\,\, Eq\text{-}g_{A} \\ X &= \frac{m_{A}.(1000\,\,\text{mL})}{V_{\text{amostra}}} = \frac{N_B.V_{B}(\text{mL}).f_{C}.\text{Eq-}g_{A(g)}.1000\,\,\text{mL}}{V_{\text{amostra}}} \\ X &\Rightarrow mg\,/\,1000\,\,\text{mL} = mg\,/\,\, litro = ppm\,\,(parte\,\,por\,\,milhão) \end{split}$$

OBS.: Na situação em que o Eq-g = Mol/1, a relação: nº de moles de A = nº de moles de B, basta substituirmos NB por MB e Eq-gA por MolA.

$$X \text{ (ppm)} = \begin{matrix} M_B.V_B(mL).f_C.MoI_{A(g)}.1000 \\ V_{amostra} \end{matrix}$$

RESUMO:

Substância "A" = substância que desejamos dosar.

Substância "B" = substância cuja concentração é conhecida, é aquela que utilizamos na

V(mL) = volume gasto da substância B, ou seja, volume gasto na bureta, durante a titulação. V(amostra) = volume da amostra utilizado para dosagem, colocado no erlenmeyer.